首页 > C# > 在 C# 中加密和解密字符串最佳方法是什么

在 C# 中加密和解密字符串最佳方法是什么

上一篇 下一篇

在 C# 中加密和解密字符串?在 C# 中满足以下内容的最现代(最佳)方法是什么?
string encryptedString = SomeStaticClass.Encrypt(sourceString);

string decryptedString = SomeStaticClass.Decrypt(encryptedString);

但是,只需最少的大惊小怪,包括盐、键、用 byte[] 胡思乱想等。

一直在谷歌上搜索并对我的发现感到困惑(您可以看到类似的 SO Q 列表,看看这是一个欺骗性的问题)。

分割线

网友回答:

更新 23/Dec/2015:由于这个答案似乎得到了很多赞成,我已经更新了它以修复愚蠢的错误,并根据评论和反馈总体上改进代码。有关具体改进的列表,请参阅帖子末尾。

正如其他人所说,密码学并不简单,因此最好避免“推出自己的”加密算法。

但是,您可以围绕内置加密类之类的东西“滚动自己的”包装器类。RijndaelManaged

Rijndael是当前高级加密标准的算法名称,因此您肯定使用的是可以被视为“最佳实践”的算法。

该类确实通常需要您使用字节数组,盐,键,初始化向量等“乱搞”。但这正是可以在“包装器”类中抽象出来的那种细节。RijndaelManaged

下面的类是我不久前写的,用于执行你所追求的那种东西,一个简单的方法调用,允许使用基于字符串的密码对一些基于字符串的明文进行加密,生成的加密字符串也表示为字符串。当然,还有一种等效的方法可以使用相同的密码解密加密字符串。

与此代码的第一个版本不同,该版本每次都使用完全相同的盐和 IV 值,这个较新的版本每次都会生成随机盐和 IV 值。由于 salt 和 IV 在给定字符串的加密和解密之间必须相同,因此在加密时将 salt 和 IV 附加到密文前面,并再次从中提取以执行解密。这样做的结果是,使用完全相同的密码加密完全相同的明文每次都会给出完全不同的密文结果。

使用它的“优势”来自使用类为您执行加密,以及使用命名空间的 Rfc2898DeriveBytes 函数,该函数将使用标准和安全算法(特别是 PBKDF2)生成您的加密密钥基于您提供的基于字符串的密码。(请注意,这是对第一个版本使用旧PBKDF1算法的改进)。RijndaelManagedSystem.Security.Cryptography

最后,重要的是要注意,这仍然是未经身份验证的加密。加密本身仅提供隐私(即第三方不知道消息),而经过身份验证的加密旨在提供隐私和真实性(即收件人知道消息是由发件人发送的)。

在不知道您的确切要求的情况下,很难说这里的代码是否足够安全以满足您的需求,但是,它的制作是为了在相对简单的实现与“质量”之间提供良好的平衡。例如,如果加密字符串的“接收方”直接从受信任的“发送方”接收字符串,则甚至可能不需要身份验证。

如果您需要更复杂的东西,并且提供经过身份验证的加密,请查看这篇文章以获取实现。

代码如下:

using System;
using System.Text;
using System.Security.Cryptography;
using System.IO;
using System.Linq;

namespace EncryptStringSample
{
    public static class StringCipher
    {
        // This constant is used to determine the keysize of the encryption algorithm in bits.
        // We divide this by 8 within the code below to get the equivalent number of bytes.
        private const int Keysize = 256;

        // This constant determines the number of iterations for the password bytes generation function.
        private const int DerivationIterations = 1000;

        public static string Encrypt(string plainText, string passPhrase)
        {
            // Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
            // so that the same Salt and IV values can be used when decrypting.  
            var saltStringBytes = Generate256BitsOfRandomEntropy();
            var ivStringBytes = Generate256BitsOfRandomEntropy();
            var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
            using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
            {
                var keyBytes = password.GetBytes(Keysize / 8);
                using (var symmetricKey = new RijndaelManaged())
                {
                    symmetricKey.BlockSize = 256;
                    symmetricKey.Mode = CipherMode.CBC;
                    symmetricKey.Padding = PaddingMode.PKCS7;
                    using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
                    {
                        using (var memoryStream = new MemoryStream())
                        {
                            using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
                            {
                                cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
                                cryptoStream.FlushFinalBlock();
                                // Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
                                var cipherTextBytes = saltStringBytes;
                                cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
                                cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
                                memoryStream.Close();
                                cryptoStream.Close();
                                return Convert.ToBase64String(cipherTextBytes);
                            }
                        }
                    }
                }
            }
        }

        public static string Decrypt(string cipherText, string passPhrase)
        {
            // Get the complete stream of bytes that represent:
            // [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
            var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
            // Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
            var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
            // Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
            var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
            // Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
            var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();

            using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
            {
                var keyBytes = password.GetBytes(Keysize / 8);
                using (var symmetricKey = new RijndaelManaged())
                {
                    symmetricKey.BlockSize = 256;
                    symmetricKey.Mode = CipherMode.CBC;
                    symmetricKey.Padding = PaddingMode.PKCS7;
                    using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
                    {
                        using (var memoryStream = new MemoryStream(cipherTextBytes))
                        {
                            using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
                            using (var streamReader = new StreamReader(cryptoStream, Encoding.UTF8))
                            {
                                return streamReader.ReadToEnd();
                            }
                        }
                    }
                }
            }
        }

        private static byte[] Generate256BitsOfRandomEntropy()
        {
            var randomBytes = new byte[32]; // 32 Bytes will give us 256 bits.
            using (var rngCsp = new RNGCryptoServiceProvider())
            {
                // Fill the array with cryptographically secure random bytes.
                rngCsp.GetBytes(randomBytes);
            }
            return randomBytes;
        }
    }
}

The above class can be used quite simply with code similar to the following:

using System;

namespace EncryptStringSample
{
    class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine("Please enter a password to use:");
            string password = Console.ReadLine();
            Console.WriteLine("Please enter a string to encrypt:");
            string plaintext = Console.ReadLine();
            Console.WriteLine("");

            Console.WriteLine("Your encrypted string is:");
            string encryptedstring = StringCipher.Encrypt(plaintext, password);
            Console.WriteLine(encryptedstring);
            Console.WriteLine("");

            Console.WriteLine("Your decrypted string is:");
            string decryptedstring = StringCipher.Decrypt(encryptedstring, password);
            Console.WriteLine(decryptedstring);
            Console.WriteLine("");

            Console.WriteLine("Press any key to exit...");
            Console.ReadLine();
        }
    }
}

(您可以在此处下载简单的VS2013示例解决方案(其中包括一些单元测试)。

23 年 2015 月 <> 日更新:代码的具体改进列表如下:

  • 修复了一个愚蠢的错误,即加密和
    解密之间的编码不同。由于生成盐和IV值的机制已经改变,不再需要编码。
  • 由于 salt/IV 更改,前面的代码注释错误地指示 UTF8 编码 16 个字符的字符串产生 32 个字节,不再适用(因为不再需要编码)。
  • 被取代的PBKDF1算法的使用已被更现代的PBKDF2算法所取代。
  • 密码派生现在被正确加盐,而以前根本没有加盐(另一个愚蠢的错误被压扁)。

分割线

网友回答:

using System.IO;
using System.Text;
using System.Security.Cryptography;

public static class EncryptionHelper
{
    public static string Encrypt(string clearText)
    {
        string EncryptionKey = "abc123";
        byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
        using (Aes encryptor = Aes.Create())
        {
            Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
            encryptor.Key = pdb.GetBytes(32);
            encryptor.IV = pdb.GetBytes(16);
            using (MemoryStream ms = new MemoryStream())
            {
                using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
                {
                    cs.Write(clearBytes, 0, clearBytes.Length);
                    cs.Close();
                }
                clearText = Convert.ToBase64String(ms.ToArray());
            }
        }
        return clearText;
    }
    public static string Decrypt(string cipherText)
    {
        string EncryptionKey = "abc123";
        cipherText = cipherText.Replace(" ", "+");
        byte[] cipherBytes = Convert.FromBase64String(cipherText);
        using (Aes encryptor = Aes.Create())
        {
            Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
            encryptor.Key = pdb.GetBytes(32);
            encryptor.IV = pdb.GetBytes(16);
            using (MemoryStream ms = new MemoryStream())
            {
                using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
                {
                    cs.Write(cipherBytes, 0, cipherBytes.Length);
                    cs.Close();
                }
                cipherText = Encoding.Unicode.GetString(ms.ToArray());
            }
        }
        return cipherText;
    }
}

分割线

网友回答:

如果您的目标是 ASP.NET 尚不支持的核心,则可以使用 .RijndaelManagedIDataProtectionProvider

首先,将应用程序配置为使用数据保护:

public class Startup
{
    public void ConfigureServices(IServiceCollection services)
    {
        services.AddDataProtection();
    }
    // ...
}

然后,您将能够注入实例并使用它来加密/解密数据:IDataProtectionProvider

public class MyService : IService
{
    private const string Purpose = "my protection purpose";
    private readonly IDataProtectionProvider _provider;

    public MyService(IDataProtectionProvider provider)
    {
        _provider = provider;
    }

    public string Encrypt(string plainText)
    {
        var protector = _provider.CreateProtector(Purpose);
        return protector.Protect(plainText);
    }

    public string Decrypt(string cipherText)
    {
        var protector = _provider.CreateProtector(Purpose);
        return protector.Unprotect(cipherText);
    }
}

有关更多详细信息,请参阅此文章。

模板简介:该模板名称为【在 C# 中加密和解密字符串最佳方法是什么】,大小是暂无信息,文档格式为.编程语言,推荐使用Sublime/Dreamweaver/HBuilder打开,作品中的图片,文字等数据均可修改,图片请在作品中选中图片替换即可,文字修改直接点击文字修改即可,您也可以新增或修改作品中的内容,该模板来自用户分享,如有侵权行为请联系网站客服处理。欢迎来懒人模板【C#】栏目查找您需要的精美模板。

相关搜索
  • 下载密码 lanrenmb
  • 下载次数 186次
  • 使用软件 Sublime/Dreamweaver/HBuilder
  • 文件格式 编程语言
  • 文件大小 暂无信息
  • 上传时间 04-17
  • 作者 网友投稿
  • 肖像权 人物画像及字体仅供参考
栏目分类 更多 >
热门推荐 更多 >
微信模板 企业网站 单页式简历模板 自适应 微信图片 微信文章 html5 微信公众平台 微信素材 响应式
您可能会喜欢的其他模板